Efficient solution on solving 3D Maxwell equations using stable semi-implicit splitting method
نویسندگان
چکیده
منابع مشابه
Solving Maxwell equations in 3D prismatic domains
In this Note, we introduce the Fourier Singular Complement Method, for solving Maxwell equations in a 3D prismatic domain. The numerical implementation of this method provides a continuous approximation of the electromagnetic field. It can be applied to the computation of propagating and evanescent modes in prismatic stub filters, thus generalizing 2D approaches. To cite this article: P. Ciarle...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملOperator Splitting Method for Coupled Problems: Transport and Maxwell Equations
In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gasphase, which are influenced by an electric field. Such a field we can model by wave equations. The main contributions are to imp...
متن کاملAn implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations
We present a time-implicit hybridizable discontinuous Galerkin (HDG) method for numerically solving the system of three-dimensional (3D) time-domain Maxwell equations. This method can be seen as a fully implicit variant of classical so-called DGTD (Discontinuous Galerkin Time-Domain) methods that have been extensively studied during the last 10 years for the simulation of time-domain electromag...
متن کاملHamiltonian splitting for the Vlasov-Maxwell equations
— A new splitting is proposed for solving the Vlasov–Maxwell system. This splitting is based on a decomposition of the Hamiltonian of the Vlasov–Maxwell system and allows for the construction of arbitrary high order methods by composition (independent of the specific deterministic method used for the discretization of the phase space). Moreover, we show that for a spectral method in space this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2016
ISSN: 2158-3226
DOI: 10.1063/1.4948771